In elemental state, oxygen is a gas in the atmosphere and is dissolved in water. The amount of relatively reactive oxygen elemental remains constant only in long run, because O2 producing plants replace much as of aerobic breathing creatures as well as other combustion processes is used again (oxygen for energy). Without this biological cycle O2 would only occur in compounds, ie elemental O2 exists in a dynamic equilibrium.
The development of O2 concentration in atmosphere is described in article Development of earth's atmosphere. The O2 allotrope O3 Ozone is present in atmosphere at low concentrations. In space, O2 is the third most abundant element after hydrogen and helium. The mass fraction of O2 is in solar system about 0.8% (this corresponds to an (atomic) number fraction of about 500 ppm).
From the Stone Age to Middle Ages, the fire to humans was a phenomenon which has been accepted as a gift from heaven. About the nature of fire caused by the different conceptions natural philosophers of antiquity to alchemist. The fire was seen as an essential ingredient of Earth. In 17th century the notion of a "light mysterious substance" was born. This phlogiston would escape from the burning fuel, heat was understood as a substance. The German-Swedish chemist Carl Wilhelm Scheele conducted experiments. When heating manganese dioxide (manganese dioxide) or potassium permanganate with concentrated sulfuric acid (vitriol) he gave a colorless gas.
O2 is slightly soluble in water. The solubility depends on the pressure and the temperature. It increases with decreasing temperature and increasing pressure. At 0 degrees C and an O2 partial pressure of air of 212 hPa dissolve in pure water 14.16 mg / l oxygen. In oxygen-gas discharge Spectrum, the molecular orbitals of O2 are stimulated to emit light. The operating conditions are a pressure of 5-10 mbar, a high voltage of 1.8 kV, a current of 18 mA and a frequency of 35 kHz. During the recombination of ionized gas molecules, the characteristic color spectrum is emitted. In this case, a small part, caused reversibly formed by the supply of energy ozone.
With the discovery of O2 its meaning was not clear during combustion. The Frenchman Antoine Lavoisier found in his experiments that during combustion does not escape phlogiston, but O2 is bound. By weighing it demonstrated that a substance after combustion was not easier but harder. This was caused by the additional weight of ingested during the combustion process oxygen.
For O2 recovery after Claude process air by means of compressors to 5-6 bar is compressed, cooled and then removed by first filter of carbon dioxide, humidity, and other gases. The compressed air is cooled by flowing past gases from the process to a temperature near the boiling point. It is then expanded in turbines. A portion of energy used for compression can again be recovered. This is the method -. In contrast to Linde process, in which no energy is recovered - a lot more efficient.
The actual separation of nitrogen and O2 by distillation in two distillation columns with different pressures. The distillation is carried out in counter-current principle, that is by the condensation heat of evaporated gas flows upward, condensed liquid drips down. Since O2 has a higher boiling point than nitrogen, it condenses readily and collects at the bottom so, nitrogen at the top of column.
The separation takes place initially at 5-6 bar in so-called medium pressure column. The resulting oxygen-enriched liquid is then (pressure about 0.5 bar) further separated in low pressure column. Through the liquid O2 of low pressure column, gaseous nitrogen of high pressure column is passed. It liquefies this and heated with the votes condensation heat the liquid. The more volatile nitrogen is discharged and preferably remains purified liquid oxygen. This still contains the noble gases krypton and xenon, which are separated in a separate column.
The development of O2 concentration in atmosphere is described in article Development of earth's atmosphere. The O2 allotrope O3 Ozone is present in atmosphere at low concentrations. In space, O2 is the third most abundant element after hydrogen and helium. The mass fraction of O2 is in solar system about 0.8% (this corresponds to an (atomic) number fraction of about 500 ppm).
From the Stone Age to Middle Ages, the fire to humans was a phenomenon which has been accepted as a gift from heaven. About the nature of fire caused by the different conceptions natural philosophers of antiquity to alchemist. The fire was seen as an essential ingredient of Earth. In 17th century the notion of a "light mysterious substance" was born. This phlogiston would escape from the burning fuel, heat was understood as a substance. The German-Swedish chemist Carl Wilhelm Scheele conducted experiments. When heating manganese dioxide (manganese dioxide) or potassium permanganate with concentrated sulfuric acid (vitriol) he gave a colorless gas.
O2 is slightly soluble in water. The solubility depends on the pressure and the temperature. It increases with decreasing temperature and increasing pressure. At 0 degrees C and an O2 partial pressure of air of 212 hPa dissolve in pure water 14.16 mg / l oxygen. In oxygen-gas discharge Spectrum, the molecular orbitals of O2 are stimulated to emit light. The operating conditions are a pressure of 5-10 mbar, a high voltage of 1.8 kV, a current of 18 mA and a frequency of 35 kHz. During the recombination of ionized gas molecules, the characteristic color spectrum is emitted. In this case, a small part, caused reversibly formed by the supply of energy ozone.
With the discovery of O2 its meaning was not clear during combustion. The Frenchman Antoine Lavoisier found in his experiments that during combustion does not escape phlogiston, but O2 is bound. By weighing it demonstrated that a substance after combustion was not easier but harder. This was caused by the additional weight of ingested during the combustion process oxygen.
For O2 recovery after Claude process air by means of compressors to 5-6 bar is compressed, cooled and then removed by first filter of carbon dioxide, humidity, and other gases. The compressed air is cooled by flowing past gases from the process to a temperature near the boiling point. It is then expanded in turbines. A portion of energy used for compression can again be recovered. This is the method -. In contrast to Linde process, in which no energy is recovered - a lot more efficient.
The actual separation of nitrogen and O2 by distillation in two distillation columns with different pressures. The distillation is carried out in counter-current principle, that is by the condensation heat of evaporated gas flows upward, condensed liquid drips down. Since O2 has a higher boiling point than nitrogen, it condenses readily and collects at the bottom so, nitrogen at the top of column.
The separation takes place initially at 5-6 bar in so-called medium pressure column. The resulting oxygen-enriched liquid is then (pressure about 0.5 bar) further separated in low pressure column. Through the liquid O2 of low pressure column, gaseous nitrogen of high pressure column is passed. It liquefies this and heated with the votes condensation heat the liquid. The more volatile nitrogen is discharged and preferably remains purified liquid oxygen. This still contains the noble gases krypton and xenon, which are separated in a separate column.
About the Author:
You can visit boostcanada.ca for more helpful information about Guide To Oxygen For Energy.
No comments:
Post a Comment